Telegram Group & Telegram Channel
Расскажите, что вы знаете про генеративно-состязательные сети (GAN)?

Так называют большой класс генеративных моделей, главная особенность которых — обучение одновременно с другой сетью, которая старается отличить сгенерированные объекты от настоящих.

👮‍♂️ Для объяснения принципа работы GAN нередко приводят аналогию с фальшивомонетчиком и полицейским. Так, задача фальшивомонетчика — научиться создавать купюры, которые полицейский не сможет отличить от реальных. Задача полицейского тем временем — научиться отличать купюры фальшивомонетчика от настоящих.

GAN состоят из двух частей: генератора (фальшивомонетчик) и дискриминатора (полицейский). Генератор учится создавать данные, похожие на те, что находятся в обучающем датасете. Дискриминатор выполняет функцию классификатора, пытаясь отличить настоящие данные от тех, что были сгенерированы генеративной сетью. То есть каждому реальному сэмплу и фейковому ставится в соответствие вероятность, которая оценивает степень принадлежности к реальным данным.

#глубокое_обучение



tg-me.com/ds_interview_lib/320
Create:
Last Update:

Расскажите, что вы знаете про генеративно-состязательные сети (GAN)?

Так называют большой класс генеративных моделей, главная особенность которых — обучение одновременно с другой сетью, которая старается отличить сгенерированные объекты от настоящих.

👮‍♂️ Для объяснения принципа работы GAN нередко приводят аналогию с фальшивомонетчиком и полицейским. Так, задача фальшивомонетчика — научиться создавать купюры, которые полицейский не сможет отличить от реальных. Задача полицейского тем временем — научиться отличать купюры фальшивомонетчика от настоящих.

GAN состоят из двух частей: генератора (фальшивомонетчик) и дискриминатора (полицейский). Генератор учится создавать данные, похожие на те, что находятся в обучающем датасете. Дискриминатор выполняет функцию классификатора, пытаясь отличить настоящие данные от тех, что были сгенерированы генеративной сетью. То есть каждому реальному сэмплу и фейковому ставится в соответствие вероятность, которая оценивает степень принадлежности к реальным данным.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/320

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA